Below are the real nutrition label and list of ingredients for classic (lemon-lime) Gatorade®:

Nutrition Facts

1 serving per container Serving Size $20 \mathrm{fl} \mathrm{oz}(591 \mathrm{~mL})$

Amount Per Serving	
CalOries	\% Daily Value
Total Fat 0 g	$\mathbf{0 \%}$
Sodium 270 mg	$\mathbf{1 2 \%}$
Total Carbohydrate 36 g	$\mathbf{1 3 \%}$
Total Sugars 34 g	
Includes 34 g Added Sugars	$\mathbf{6 9 \%}$
Protein 0 g	
Potassium 80 mg	0%

Not a significant source of saturated fat, trans fat, cholesterol, dietary fiber, vitamin D, calcium, and iron.
*The \% Daily Value (DV) tells you how much a nutrient in a serving of food contributes to a daily diet. 2,000 calories a day is used for general nutrition advice.

INGREDIENTS: Water, sugar [sucrose], dextrose [glucose], citric acid, salt [NaCl], sodium citrate, monopotassium phosphate, gum arabic, glycerol ester of rosin, natural flavor, yellow 5 .

Reference Data

Substance	Symbol(s)	Molar mass
Water	$\mathrm{H}_{2} \mathrm{O}$	$18 \mathrm{~g} / \mathrm{mol}$
Sodium chloride	NaCl	$58.5 \mathrm{~g} / \mathrm{mol}$
Sodium ion	Na^{+}	$23 \mathrm{~g} / \mathrm{mol}$
Chloride ion	Cl^{-}	$35.5 \mathrm{~g} / \mathrm{mol}$
Dextrose (glucose)	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$180.2 \mathrm{~g} / \mathrm{mol}$
Potassium ion	K^{+}	$39.1 \mathrm{~g} / \mathrm{mol}$
Source of molar mass reference data: Wolfram\|Alpha®. Certain molar masses have been rounded off.		

Please answer the following questions to the best of your ability.

Note that all questions inquire about 1 L Gatorade $®$, so pay attention to that serving size!

1. What is the amount of sodium ion $\left(\mathrm{Na}^{+}\right)$in 1 L Gatorade®?
2. What is the total amount of potassium ion $\left(\mathrm{K}^{+}\right)$ in 1 L Gatorade $®$?
3. Assume that all chloride ion $\left(\mathrm{Cl}^{-}\right)$is derived from NaCl and KCl . What is the amount of chloride ion $\left(\mathrm{Cl}^{-}\right)$in 1 L Gatorade $®$?
4. What is the mass of sodium chloride (NaCl) that would be needed to make 1 L Gatorade $®$?
5. What is the mass of potassium chloride (KCl) that would be needed to make 1 L Gatorade $®$?
6. Assume that all carbohydrate is dextrose (glucose). What is the total amount of dextrose (glucose) in 1 L Gatorade $®$?
7. What is the sodium ion $\left(\mathrm{Na}^{+}\right)$amount concentration for Gatorade ${ }^{\circledR}$?
8. What is the potassium ion $\left(\mathrm{K}^{+}\right)$amount concentration for Gatorade $®$?
9. What is the chloride ion $\left(\mathrm{Cl}^{-}\right)$amount concentration for Gatorade®?
10. What is the dextrose (glucose) amount concentration for Gatorade®?
11. What would be the dextrose (glucose) amount concentration if expressed as a percentage? (Remember: $p \%=p$ g solute per dL solution.)
12. What is the calculated osmolarity of 1 L Gatorade®?
13. How does our calculated Gatorade \circledR^{\circledR} osmolarity compared to the normal value of human plasma/serum water osmolarity?
14. How does the "chemical anatomy" of Gatorade ${ }^{\circledR}$ compare to that of normal human plasma/serum?

For the next questions, we consider "physiologic fate". Physiologic fate essentially means the physical destination of the solute and how it is used metabolically once it reaches its destination.
15. What is the physiological fate of Gatorade $®$ delivered sodium ion?
16. What is the physiological fate of Gatorade $®$ delivered potassium ion?
17. What is the physiological fate of Gatorade ${ }^{\circledR}$ delivered chloride ion?
18. What is the physiological fate of Gatorade ${ }^{\circledR}$ delivered citrate ion?
19. What is the physiological fate of Gatorade \circledR^{\circledR} delivered dihydrogen phosphate ion?
20. What is the physiological fate of Gatorade ${ }^{\circledR}$ delivered dextrose (glucose)?

