

LAURA ELLWEIN FIX

(formerly *Laura Marie Ellwein*)

Virginia Commonwealth University
Dept. of Mathematics and Applied Mathematics
1015 Floyd Avenue
Harris Hall 4170
Richmond, VA 23284

lellwein@vcu.edu
(804) 828-2748
blogs.vcu.edu/lellwein

EDUCATION

North Carolina State University, Raleigh, NC

- Ph.D. Applied Mathematics, December 2008.
 - Dissertation title: "Cardiovascular and Respiratory Regulation, Modeling and Parameter Estimation." (as *Laura Marie Ellwein*)
 - Dissertation advisor: Mette S. Olufsen.
 - Interdisciplinary concentration in Physiology.
- M.S. Applied Mathematics, December 2005.
 - Concentration in Computational Mathematics.

University of Wisconsin, Madison, WI

- B.S. in Chemical Engineering, August 1999.

RESEARCH INTERESTS

Data-driven patient-specific model development and parameter estimation, regulation in cardiovascular and pulmonary systems, numerical methods and optimization, computational fluid dynamics, differential equations and dynamical systems, algorithm development for biomedical applications.

POSITIONS / APPOINTMENTS

Virginia Commonwealth University

Associate Chair and Director of Undergraduate Programs (Department)	2024 - present
Tenured Associate Professor, Dept. of Mathematics and Applied Mathematics	2019 - present
Assistant Professor, Department of Mathematics and Applied Mathematics	2012 - 2019
Sloan Pre-tenure Leave program (VCU parental leave)	Fall 2014

Vivonics, Inc.

Consultant	2020 – present
------------	----------------

Marquette University

Postdoctoral Fellow and Guest Lecturer, Department of Biomedical Engineering	2008 – 2012
--	-------------

Milwaukee School of Engineering

Adjunct Instructor, Department of Mathematics	2010 – 2012
---	-------------

North Carolina State University

Research Assistant and Instructor, Department of Mathematics	2003 – 2008
--	-------------

Advisor / Mentor, Summer Research Experiences for Undergraduates Harvard Medical School / Beth Israel Deaconess Medical Center	2005, 2006, 2008
Summer Research Assistant, "T32: Translational Research on Aging" (Vera Novak, MD)	2004
University of Graz, Austria	
Summer Visiting Researcher, Department of Mathematics (Jerry Batzel, PhD)	2006
Statistics and Applied Mathematical Sciences Institute (SAMSI)	
Graduate Student Fellow (Mette Olufsen, Tom Banks)	2004
Merck & Company, Inc.	
Summer Intern, Applied Computer Science and Mathematics Department	2007
General Mills, Inc.	
Quality Engineer, multiple locations	1999 – 2003

REFERRED PUBLICATIONS AND PROCEEDINGS

22. Foster R and **Ellwein Fix L**. (2025) Parameter identifiability of a respiratory mechanics model in the extremely preterm infant. Accepted for publication, *Royal Society Philosophical Transactions A*. <http://arxiv.org/abs/2501.08533>.
21. Helen Harris, David Chan, PhD; **Laura Ellwein Fix, PhD**; Melissa Chouinard, MD; Teresa Salgado, MPharm, PhD; Le Kang, PhD; Gonzalo Bearman, MD, MPH. (2025) Incremental Benefit of Medication Reconciliation Practices on Patient Health Outcomes in a Healthcare Setting. Accepted for publication, *The Joint Commission Journal on Quality and Patient Safety*..
20. Luke R.A., Kelly G., Stoner M., O'Brien J.E., Lubkin S., **Ellwein Fix L**. (2024) Towards a Mathematical Understanding of Ventilator-Induced Lung Injury in Preterm Rat Pups. In: *Ford Versypt, A.N., Segal, R.A., Sindi, S.S. (eds) Mathematical Modeling for Women's Health. The IMA Volumes in Mathematics and its Applications*, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-031-58516-6_6
19. Foster R, Smith B, **Ellwein Fix L**. (2023) Thoracoabdominal asynchrony in a virtual preterm infant: computational modeling and analysis. *Am J Physiol Lung Cell Mol Physiol*, 325(2):L190-L205. <https://journals.physiology.org/doi/abs/10.1152/ajplung.00123.2022>
18. **Ellwein Fix L**, Filippas A, Brucal-Hallare M, Segal R. (2022) SUMMIT-P Initiative: Improving student knowledge transfer between mathematics and engineering courses through active cross-disciplinary paradigms and terminology. *Journal of Mathematics and Science: Collaborative Explorations*, Vol. 18: No. 1, Article 4. https://scholarscompass.vcu.edu/jmsce_vamsc/vol18/iss1/4
17. Colebank MJ, Qureshi MU, Chesler N, Husmeier D, Olufsen MS, **Ellwein Fix L**. (2019) Influence of image segmentation on one-dimensional fluid dynamics predictions in the mouse pulmonary arteries. *J R Soc Interface*, 16(159):201900284. <https://royalsocietypublishing.org/doi/10.1098/rsif.2019.0284>
16. Qureshi MU, Colebank MJ, Paun ML, **Ellwein Fix L**, Chesler N, Haider MA, Hill NA, Husmeier D, Olufsen MS. (2019) Hemodynamic assessment of pulmonary hypertension in mice – a model-based analysis of the disease mechanism. *Biomech Model Mechanobiol*, 18(1):219-243, <https://doi.org/10.1007/s10237-018-1078-8>
15. **Ellwein Fix L**, Khoury J, Moores RR Jr., Linkous L, Brandes M, Rozycski H. (2018). Theoretical open-loop model of respiratory mechanics in the extremely preterm infant. *PLoS ONE*, 13(6):1-21. <https://doi.org/10.1371/journal.pone.0198425>

14. **Ellwein L**, Samyn M, Danduran M, Schindler-Ivens S, Liebham S, LaDisa Jr. JF. (2017) Toward translating near-infrared spectroscopy oxygen saturation data for the non-invasive prediction of spatial and temporal hemodynamics during exercise. *Biomech Model Mechanobiol*, 16(1):75-96. <https://doi.org/10.1007/s10237-016-0803-4>
13. **Ellwein L**, Marks DS, Migrino RQ, Foley WD, Sherman S, LaDisa JF Jr. (2015) Image-based quantification of 3-D morphology for bifurcations in the left coronary artery: application to stent design. *Cathet Cardiovasc Intervent*, 87(7):1244-1255. <https://doi.org/10.1002/ccd.26247>
12. Ford Versypt AN, Makrides E, Arciero J, **Ellwein L**, Layton AT. (2015) Bifurcation study of blood flow control in the kidney. *Math Biosci*, 263:169-179. <https://doi.org/10.1016/j.mbs.2015.02.015>
11. Quam DJ, Gundert TJ, Migrino RQ, Otake H, **Ellwein L**, Hayden P, LaDisa JF, Jr. (2015) Immersive Visualization for Enhanced Computational Fluid Dynamics Analysis. *J Biomech Eng*, 137(3):031004. <https://dx.doi.org/10.1115%2F1.4029017>
10. Arciero J*, **Ellwein L***, Ford Versypt AN*, Makrides E, Layton AT. (2015) Modeling blood flow control in the kidney. In: Jackson T, Radunskaya A (Eds) *Applications of Dynamical Systems in Biology and Medicine. The IMA Volumes in Mathematics and its Applications*, Vol 158, pp.55-73. Springer New York. https://doi.org/10.1007/978-1-4939-2782-1_3. (* equal contribution)
9. **Ellwein LM**, LaDisa JF, Jr., Leibham S, Schindler-Ivens S, Samyn M. (2013) Quantification of thoracic aorta blood flow by magnetic resonance imaging during supine cycling exercise of increasing intensity. *J Cardiov Magn Reson*, 15(Suppl 1):P239. <https://doi.org/10.1186/1532-429X-15-S1-P239>
8. **Ellwein LM**, Pope S, Xie A, Batzel JJ, Kelley CT, Olufsen MS. (2013) Patient-specific modeling of cardiovascular and respiratory dynamics during hypercapnia. *Math Biosci*, 241:56-72. <https://dx.doi.org/10.1016%2Fj.mbs.2012.09.003>
7. Wendell DC, Samyn MM, Cava JR, **Ellwein LM**, Krolkowski MM, Gandy KL, Pelech AN, Shadden SC, LaDisa JF. (2013) Including aortic valve morphology in computational fluid dynamics simulations: initial findings and application to aortic coarctation. *Med Eng Phys*, 35(6):723-735. <https://dx.doi.org/10.1016%2Fj.medengphy.2012.07.015>
6. Batzel JJ, **Ellwein LM**, Olufsen MS. (2011) Modeling cardio-respiratory system response to inhaled CO₂ in patients with congestive heart failure. *Proc 33rd Ann Inter Conf IEEE/EMBC*, Boston: 2418-2421. <https://doi.org/10.1109/IEMBS.2011.6090673>
5. **Ellwein LM**, Otake H, Gundert TJ, Koo B-K, Shinke T, Honda Y, Shite J, Ladisa JF, Jr. (2011) Optical coherence tomography for patient-specific 3D artery reconstruction and evaluation of wall shear stress in a left circumflex coronary artery. *Cardiovasc Eng Technol*, 2(3): 212-227. <https://doi.org/10.1007/s13239-011-0047-5>
4. LaDisa JF, Jr., Figueroa CA, Vignon-Clementel IE, Kim HJ, Xiao N, **Ellwein LM**, Chan FP, Feinstein JA, Taylor CA. (2011) Computational simulations for aortic coarctation: representative results from a sampling of patients. *J Biomech Eng*, 133(9):091008. <http://dx.doi.org/10.1115/1.4004996>
3. Pope SR, **Ellwein LM**, Zapata CL, Novak V, Kelley CT, Olufsen MS. (2009) Estimation and identification of parameters in a lumped cerebrovascular model. *Math Biosci Eng*, 6(1):93-115. <http://dx.doi.org/10.3934/mbe.2009.6.93>
2. **Ellwein LM**, Tran H, Zapata CL, Novak V, Olufsen MS. (2008) Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure. *J Cardio Eng*, 8(2):94-108. <https://doi.org/10.1007/s10558-007-9047-3>

1. Olufsen MS, Ottesen JT, Tran HT, **Ellwein LM**, Lipsitz LA, Novak V. (2005) Blood pressure and blood flow variation during postural change from sitting to standing - modeling and experimental validation. *J Appl Physiol*, 99(4):1523-1537. <https://dx.doi.org/10.1152%2Fjapplphysiol.00177.2005>

MANUSCRIPTS IN PREPARATION

Harris H, Ellwein Fix L. A closed-loop model of dependence of cerebrovascular reactivity on inhaled carbon dioxide.

Aleiou A, Otake H, Hughey JK, Arzani A, **Ellwein Fix L**, LaDisa JF, Jr. Evaluation of wall shear stress indices in stented coronary arteries reconstructed using optical coherence tomography and computed tomography.

HONORS / AWARDS

Association for Women in Mathematics Travel Award	2023
Invitation and Travel Award, IMA Special Workshop	2022
"Collaborative Workshop for Women in Mathematical Biology: Mathematical Approaches to Support Women's Health"	
Association for Women in Mathematics Travel Award	2018
Mentor, Undergraduate Research Opportunities Program Awardee (VCU)	2018
Proposal ranked highest of all proposals in the College of Humanities and Sciences	
Faculty Council Research Award, College of Humanities and Sciences (VCU)	2016
Invitation and Travel Award, ICERM Topical Workshop	2014
"From the Clinic to Partial Differential Equations and Back: Emerging Challenges for Cardiovascular Mathematics."	
Invitation and Travel Award, IMA Special Workshop	
"WhAM! A Research Collaboration Workshop for Women in Applied Mathematics, Dynamical Systems with Applications to Biology and Medicine."	2013
Postdoctoral Travel Award, SIAM / ICIAM	
7 th International Congress on Industrial and Applied Mathematics, Vancouver BC	2011
Midwest Affiliate Postdoctoral Fellowship, American Heart Association	
<i>Translating Near Infrared Spectroscopy (NIRS) O₂ Saturation Data for the Noninvasive Prediction of Spatial and Temporal Hemodynamics during Exercise</i>	2010-2012
Student Travel Awards, SIAM	
SIAM Conference on Imaging Science, San Diego, CA	2008
SIAM Conference on Mathematics for Industry, Pittsburgh PA	2007
Best Graduate Student Presentation Award, SIAM-SEAS	2005
Graduate Student Fellowship, SAMSI	2004

GRANTS AWARDED

VCU Libraries Affordable Course Content Award	2024
<i>Creation of Ancillary Open Access Materials for Undergraduate Numerical Methods in the Department of Mathematics and Applied Mathematics</i>	
PI: Laura Ellwein Fix, PhD. (\$2000 over 1 year)	

Seed Award (VCU) <i>Predictive Modeling of Cerebrovascular Reactivity</i> PI: Laura Ellwein Fix Award: \$5000 for student stipend and travel.	Apr 2024
REAL Challenge Award (VCU) <i>"REAL Experience in Mathematics Clearinghouse".</i> PI: Laura Ellwein Fix. Award: \$2500 stipend to Laura Ellwein Fix, \$1000 stipend to student (TBD).	Nov 2022
Undergraduate Research Opportunities Program Fellowship (VCU) <i>"Modeling Cerebrovascular Reactivity in a Computer Model of Cardiorespiratory Dynamics"</i> PI: Mariana Fernandes Gragnani (student). Award: \$1500 stipend to Fernandes Gragnani; \$500 stipend to Laura Ellwein Fix, PhD.	May 2021
Undergraduate Research Opportunities Program Fellowship (VCU) <i>Modeling Breathing Asynchrony in a Computer Model of Respiratory Mechanics.</i> PI: Richard Foster (student). Award: \$1500 stipend to Foster; \$500 stipend to Laura Ellwein Fix, PhD.	May 2020
Undergraduate Research Opportunities Program Fellowship (VCU) <i>Modeling Mechanoreflexes in a Computer Model of Breathing Mechanics.</i> PI: Jeffrey Evans (student). Award: \$1500 stipend to Evans; \$500 stipend to Laura Ellwein Fix, PhD.	May 2018
Faculty Council Research Award, College of Humanities and Sciences (VCU) <i>Computational Modeling of Chest wall Rigidity.</i> PI: Laura Ellwein Fix, PhD. Award: \$600, funded summer student (Lauren Linkous).	May 2016
Atlantic Pediatric Device Consortium, 5th Annual Innovation Competition Award. <i>Improving Chest Wall Rigidity in Very Preterm Infants.</i> Co-PIs: Ku and Boyan. FDA #5P50FD004193-07, subaward GIT-RE159 to Henry Rozicki Consultant: \$3000.	Oct 2015
Marquette University / Kobe University, Sub-Award PT109392 <i>Optical Coherence and Computed Tomography for Evaluation of Wall Shear Stress and Thrombus Potential in Coronary Arteries After Stenting.</i> PI: John LaDisa Jr., PhD. Subaward: \$9,168.	Apr 2013
American Heart Association, #10POST4210030 Midwest Affiliate Postdoctoral Fellowship <i>Translating Near Infrared Spectroscopy (NIRS) O₂ Saturation Data for the Noninvasive Prediction of Spatial and Temporal Hemodynamics during Exercise.</i> PI: Laura M. Ellwein, PhD. Award: \$90,772.	July 2010

ADDITIONAL FUNDED RESEARCH

American Diabetes Association - #7-08-JF-25. PI: John LaDisa, PhD. Funded two years of postdoctoral research.	2008
National Science Foundation - DMS, #DMS0616597. Co-PIs: Mette Olufsen, PhD and Pierre Gremaud, PhD. Funded dissertation writing.	2007
National Science Foundation - OISE, #0437037. PI: Mette Olufsen, PhD. Funded research travel to Europe.	2006

National Institutes of Health -- NIA, #T32 AG-023480	2004
PI: Vera Novak, MD. Funded summer research.	
Statistical and Applied Mathematical Sciences Institute	2004
Funded one year of graduate research.	

GRANTS SUBMITTED or PENDING

Simons Foundation Travel Support for Mathematicians	2024
<i>Predictive modeling in human systems physiology</i>	
PI: Laura Ellwein Fix, PhD. (\$42,000 over 5 years, not funded)	
VCU CCTR Translational Science Pilot Grant	2024
<i>Translational modeling of the catecholamine hormones response to stress</i>	
PI: David Chan, PhD. (\$49,385 over 12 months, not funded)	
VIVA Open Course Grant	2024
<i>Ancillary Open Access Materials for Undergraduate Numerical Methods</i>	
PI: Laura Ellwein Fix, PhD. (\$5004 over 1 year, not funded)	
VCU CCTR Endowment Fund	2024
<i>Functional modeling of the catecholamine hormones response to stress</i>	
PI: Laura Ellwein Fix, PhD. (\$49,385 over 18 months, not funded)	
NSF Improving Undergraduate STEM Education (IUSE)	2023
<i>Collaborative Research: Researching institutional transformation in the context of interdisciplinary STEM partnerships to support student transfer of mathematical knowledge.</i> Multi-institutional grant.	
Co-PI, VCU. (\$100,000 over 4 years, not funded)	
VCU Quest Fund	2023
<i>Novel Complex Adrenal Hormone Modeling in Healthy Subjects</i>	
PI: Benjamin Nicolson. Role: Co-PI. (\$50,000 over 18 months, not funded)	
DoD Peer Reviewed Medical, Discovery Award	2023
<i>Modeling Adrenal Hormone Response to Acute Hemorrhagic Shock and Resuscitation in a Swine Model.</i>	
PI: Benjamin Nicolson, MD. Role: Co-I. (\$242,818 over 1 year, not funded)	
Simons Foundation Travel Support for Mathematicians	2023
<i>Modeling dynamics underlying cardiopulmonary disease</i>	
PI: Laura Ellwein Fix, PhD. (\$35,000 over 5 years, not funded)	
NSF Improving Undergraduate STEM Education (IUSE)	2022
<i>Collaborative Research: Researching institutional transformation in the context of interdisciplinary STEM partnerships to support student transfer of mathematical knowledge.</i> Multi-institutional grant.	
Co-PI, VCU. (\$140,000 over 4 years, not funded)	
VCU Breakthroughs Fund	2022
<i>Designing a Novel Hypothalamic-Pituitary-Adrenal Axis Sensor System and Mathematical Modeling for Clinical Applications.</i>	
PI: Benjamin Nicolson, MD. Role: Co-PI. (\$200,000 over 18 months, not funded)	
Simons Foundation Collaborative Grants for Mathematicians	2022
<i>Modeling dynamics underlying cardiopulmonary disease</i>	
PI: Laura Ellwein Fix, PhD. (\$35,000 over 5 years, not funded)	

Simons Foundation Collaborative Grants for Mathematicians	2020
<i>Modeling dynamic responses in cardiorespiratory physiology: a collaborative approach</i>	
PI: Laura Ellwein Fix, PhD. (\$35,000 over 5 years, not funded)	
Jeffress Trust Fund (limited submission preproposal)	2018
<i>Computational investigation of biomarkers impacting risk of lung volume loss in premature infants</i>	
PI: Laura Ellwein Fix, PhD. (\$100,000 over 12 months, not invited to submit)	
National Institutes of Health - NICHD, R03	2018
<i>Assessment of chest wall compliance in extremely preterm infants: integrated modeling and clinical approach.</i> PI: Laura Ellwein Fix, PhD. (\$100,000 over 2 years, not funded).	
American Thoracic Society Foundation Research Program (letter of intent)	2018
<i>Computational assessment of chest wall compliance and respiratory mechanics in preterm infants</i>	
PI: Laura Ellwein Fix, PhD. (\$40,000 over 1 year, not invited to submit)	
Jeffress Trust Fund (limited submission preproposal)	2017
<i>Improving chest wall rigidity in very preterm infants: integrated modeling and device development.</i>	
PI: Laura Ellwein Fix, PhD. (\$100,000 over 12 months, not invited to submit)	
Undergraduate Research Opportunities Program Fellowship (VCU)	2017
<i>Modeling lung volume recruitment in a computer model of breathing dynamics.</i>	
PI: Lauren Linkous (student). (\$2,000 to LEF and student, not funded)	
Presidential Research Quest Fund (VCU)	2017
<i>Theoretical process modeling of blood flow regulation in the microcirculation.</i>	
PI: Laura Ellwein Fix, PhD. (\$36,167 over 18 months, not funded)	
Jeffress Trust Fund (limited submission preproposal)	2016
<i>Modeling the contribution of chest wall stiffness to lung function in very preterm infants.</i>	
PI: Laura Ellwein, PhD. (\$100,000 over 12 months, not invited to submit)	
Presidential Research Quest Fund (VCU)	2016
<i>Theoretical process modeling of blood flow regulation in the microcirculation.</i>	
PI: Laura Ellwein, PhD. (\$43,000 over 18 months, not funded)	
American Heart Association Collaborative Sciences Award (letter of intent)	2016
<i>Microvascular oxygen transport and its regulation</i>	
PI: Roland Pittman, PhD. (\$750,000 over 3 years, not invited to submit)	
Simons Foundation Investigators in the Mathematical Modeling of Living Systems	2015
<i>A new paradigm for local blood flow regulation: an integrated experimental and computational modeling approach.</i> PI: Laura Ellwein, PhD. (\$500,000 over 5 years, not funded)	
Jeffress Trust Fund (limited submission preproposal)	2015
<i>Computational modeling of a new (NO/O2)-based paradigm for local blood flow regulation.</i>	
PI: Laura Ellwein, PhD. (\$100,000 over 12 months, not invited to submit)	
W.M. Keck Foundation (limited submission concept paper)	2014
<i>A new paradigm for regulation of blood flow in health and disease.</i>	
PI: Roland Pittman, PhD. (not invited to submit)	
American Heart Association Collaborative Sciences Award (letter of intent)	2013
<i>A new paradigm for local control of blood flow: experimental and theoretical studies</i>	
PI: Roland Pittman, PhD. (\$750,000 over 3 years, not invited to submit)	

Jeffress Trust Fund (limited submission preproposal)

2013

Local regulation of blood flow: an integrated experimental and computational modeling approach.

PI: Laura Ellwein, PhD. (\$100,000 over 12 months, not invited to submit)

PROFESSIONAL MEETING AND CONFERENCE PRESENTATIONS**SIAM Life Sciences Annual Meeting**, *Parameter Identifiability of a Respiratory Mechanics Model in a Preterm Infant*. Portland, OR - June 2024.**Symposium on Biology and Ecology Education and Research** (Presented by Helen Harris*),
Modeling physiological response to stress via hormone and catecholamine production. Richmond, VA - November 2023.**Symposium on Biology and Ecology Education and Research**, *Modeling-Forward Initiatives in Differential Equations*. Richmond, VA - November 2023.**AWM Research Symposium**, *Computational Models of pulmonary mechanics in the preterm infant*. Atlanta, GA - October 2023.**Society for Mathematical Biology** (Poster presented by Richard Foster*), *Thoracoabdominal asynchrony in a virtual preterm infant: computational modeling and analysis*. Columbus, OH - July 2023.**BAMM! 2023** (Presented by Richard Foster*), *Thoracoabdominal asynchrony in a virtual preterm infant: Computational modeling and analysis*. Richmond, VA - May 2023.**MAA MathFest**, *An Interdisciplinary Initiative towards Modeling-First Differential Equations*. Philadelphia, PA - August 2022.**Biology and Medicine through Mathematics** (Poster presented by Richard Foster), *Thoracoabdominal asynchrony in a virtual preterm infant: computational modeling and analysis*. Richmond, VA - May 2022.**VCU Poster Symposium for Undergraduate Research and Creativity** (Poster presented by Mariana Fernandes Gragnani). *Modeling cerebrovascular reactivity in a computer model of cardiovascular dynamics*. Richmond, VA - April 2022.**Society for Mathematical Biology** (Presentation by Richard Foster), *Modeling breathing asynchrony in the preterm infant*. Virtual - June 2021.**Shenandoah Undergraduate Mathematics Conference at JMU** (Presentation by Richard Foster), *Mathematical model of asynchronous respiratory mechanics*. Virtual -- December 2020.**SIAM Life Sciences Annual Meeting** (Mini-symposium presentation, organizer), *Towards patient-specific modeling of pulmonary ventilation dynamics in the preterm infant*. Virtual - June 2020.**AMS Southeastern Sectional Meeting** (Invited special session presentation), *Dynamics of spontaneous breathing in the extremely preterm infant*. Charlottesville, VA - 2020 (cancelled).**Biology and Medicine through Mathematics** (Presentation), *Parameter identifiability of a dynamical system model of breathing in a preterm infant*. Richmond, VA - May 2019.**VCU Poster Symposium for Undergraduate Research and Creativity** (Poster presented by Jeffrey Evans). *Modeling breathing mechanism in a computer model of respiratory mechanics in preterm infants*. Richmond, VA - April 2019.**Joint Mathematics Meetings** (Invited Mini-symposium presentation), *Parameter identifiability of a respiratory mechanics model in an idealized preterm infant*. Baltimore, MD - January 2019.

Society of Industrial and Applied Mathematics (SIAM) Annual Meeting (Invited Mini-symposium presentation), *Mathematical models of autoregulation in the renal and cerebral circulations*. Portland, OR – July 2018.

SIAM Southeastern Atlantic Sectional Conference (Invited Mini-symposium presentation), *Modeling and parameter estimation of pulmonary dynamics in the premature infant*. Chapel Hill, NC – March 2018.

Society for Mathematical Biology (SMB) Annual Meeting (Mini-symposium presentation, co-organizer), *Impact of chest wall compliance on respiratory dynamics*. Salt Lake City, UT – July 2017.

Pediatric Academic Societies Meeting (Poster, presented by Rozycki HJ), *Variable chest wall compliance in ELBW babies: a computational model*. San Francisco, CA – May 2017.

Biology and Medicine through Mathematics (Presentation, co-organizer), *A computational model of variable chest wall compliance in extremely preterm infants*. Richmond, VA – May 2017.

Lloyd Roeling UL Lafayette Mathematics Conference: Applied Mathematics (Invited presentation) *Modeling the effect of increased chest wall compliance on respiratory dynamics*. Lafayette, LA – November 2016.

38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Poster), *Modeling increased chest wall rigidity in the premature infant*. Orlando, FL – August 2016.

SIAM – Life Sciences Annual Meeting (Invited Mini-symposium presentation), *Computational modeling of a new paradigm for local blood flow regulation*. Boston, MA – July 2016.

SIAM Annual Meeting -- Association for Women in Mathematics Workshop (Invited Mini-symposium Presentation), *Modeling respiratory dynamics in the premature infant*. Boston, MA – July 2016.

SMB Annual Meeting (Invited Mini-symposium presentation) *Translating Near Infrared Spectroscopy (NIRS) O₂ Saturation Data for the Noninvasive Prediction of Spatial and Temporal Hemodynamics during Exercise*. Atlanta, GA – July 2015.

Mathematical Biosciences Institute (MBI) Workshop: “From Molecular to Systems Physiology” (Presentation, co-organizer), *Image-based 3D quantification and reconstruction of coronary artery morphology in the context of stenting as treatment of cardiovascular disease*. Columbus, OH – May 2014.

Institute for Computational and Experimental Research in Mathematics (ICERM) Workshop: “From the Clinic to Partial Differential Equations and Back: Emerging challenges for Cardiovascular Mathematics” (Poster), *Image-based quantification of left coronary artery bifurcation morphology and implications for stent design*. Providence, RI – January 2014. (Received ICERM Travel Award).

The 6th International Symposium on Biomathematics and Ecology: Education and Research (Invited Mini-symposium Presentation), *Coronary morphology quantification for bifurcating stent design*. Arlington, VA – October 2013.

The 16th Annual Society for Cardiac Magnetic Resonance Scientific Sessions (Poster), *Quantification of Thoracic Aorta Blood Flow by Magnetic Resonance Imaging during Supine Cycling Exercise of Increasing Intensity*. San Francisco, CA – February 2013.

The 3rd International Conference on Engineering Frontiers in Pediatric and Congenital Heart Disease (Poster and Presentation), *Translating near-infrared spectroscopy O₂ saturation data for the non-invasive prediction of spatial and temporal hemodynamics during exercise*. Palo Alto, CA – May 2012.

Biomedical Engineering Society (BMES) Annual Meeting (Poster, presented by Quam DJ), *Mobile virtual reality system for cardiovascular CFD analysis*. Hartford, CT – October 2011.

International Congress on Industrial and Applied Mathematics (ICIAM) (Presentation), *Optical coherence tomography for patient-specific stented coronary artery reconstruction and shear stress analysis*. Vancouver, BC – July 2011. (Received ICIAM Postdoc Travel Award)

BMES Annual Meeting (Presentation), *Spatial characterization of coronary artery pathologies using optical coherence tomography*. Austin, TX – October 2010.

BMES Annual Meeting (Poster, presented by Wang H), *Vascular changes in type 2 diabetes mellitus: application to restenosis after stenting*. Austin, TX – October 2010.

SIAM Life Sciences Annual Meeting (Presentation), *Spatial Characterization of Coronary Artery Pathologies using Optical Coherence Tomography*. Pittsburgh, PA – July 2010.

BMES Annual Meeting (Poster), *Influence of aortic valve morphology on arch hemodynamics after successful aortic coarctation repair*. Pittsburgh, PA – October 2009.

SIAM Conference on Imaging Sciences (Presentation), *Sensitivity analysis applied to cardiovascular models*. San Diego, CA – July 2008. (Received SIAM Student Travel Award)

SIAM Mathematics in Industry Conference (Presentation), *Blood pressure and blood flow variation during hyperventilation*. Philadelphia, PA – October 2007. (Received SIAM Student Travel Award)

MBI Workshop: "Blood Flow in the Microcirculation: Function, Regulation, and Adaptation" (Poster), *Blood pressure and blood flow variation during postural change from sitting to standing: model reduction and improvement*. Columbus, OH – January, 2007.

Applications of Analysis to Mathematical Biology Conference (Poster), *Blood pressure and blood flow variation during hyperventilation*. Durham, NC – May 2007.

SIAM - Southeast Atlantic Section Conference (Presentation), *Modeling autonomic and autoregulation of blood flow during postural change from sitting to standing*. Charleston, SC – 2005. (Best Graduate Student Presentation – Applications)

INVITED SEMINARS AND COLLOQUIA

RIT, Mathematical Modeling Seminar, *Modeling and Parameterization of Respiratory Dynamics in the Preterm Infant*. Rochester, NY – October 2024.

VCU, Department of Mathematics and Applied Mathematics Biomath Seminar, *Patient-specific modeling and parameter estimation of cardiovascular and respiratory dynamics*. Richmond, VA – October 2023.

VCU, Department of Mechanical and Nuclear Engineering Research Seminar, *Patient-specific modeling and parameter estimation of cardiovascular and respiratory dynamics*. Richmond, VA – March 2023.

Children's Hospital of Richmond EPIC@CHRI Section Meeting, *Computer Models of Infant Breathing*. Richmond VA – February 2022.

Longwood University, Mathematics and Computer Science Colloquium Series, *Patient-specific modeling of cardiovascular and respiratory dynamics*. Farmville, VA – April 2020 (cancelled, COVID).

VCU, Department of Chemical and Life Science Engineering Graduate Research Seminar, *Toward patient-specific modeling of respiratory mechanics in the preterm infant*. Richmond, VA – September 2019.

University of Richmond, Department of Mathematics and Statistics Colloquium, *Parameter identifiability of a respiratory mechanics model in an idealized preterm infant*. Richmond, VA – January 2019.

The College of New Jersey, Department of Mathematics and Computer Scienc Colloquium, *Patient-specific modeling and parameter estimation of cardiovascular and respiratory dynamics*. Trenton, NJ – November 2017.

James Madison University, Department of Mathematics and Statistics Colloquium, *Patient-specific modeling of cardiovascular and respiratory dynamics*. Harrisonburg, VA – February 2016.

North Carolina State University, Biomathematics Seminar, *Translating near-infrared spectroscopy O₂ saturation data for the noninvasive prediction of spatial and temporary hemodynamics during exercise.*, Raleigh, NC – November 2015.

VCU, Department of Physiology and Biophysics Seminar, *Patient-specific modeling of cardiovascular and respiratory dynamics during hypercapnia*. Richmond, VA – May 2015.

William and Mary, Biomathematics Seminar, *Image-based quantification of left coronary artery bifurcation morphology and implications for stent design*. Williamsburg, VA – March 2014.

Christopher Newport University, Mathematics Colloquium, *Patient-specific 3D Reconstruction of a Stented Coronary Artery for Analysis of Cardiovascular Disease.*, Newport News, VA – March 2013.

University of Delaware, Applied Mathematics Seminar, *Patient-specific 3D Reconstruction of a Stented Coronary Artery for Analysis of Cardiovascular Disease*. Newark, DE – October 2012.

North Carolina State University, Biomathematics Seminar, *Optical coherence tomography for patient-specific 3D artery reconstruction and evaluation of wall shear stress in a left circumflex artery*. Raleigh, NC – September 2011.

Marquette University, Mathematics, Statistics and Computer Science Colloquium, *Patient-specific 3D artery reconstruction and evaluation of wall shear stress in a coronary artery using medical imaging and graph theory.*, Milwaukee, WI – April 2011.

Froedtert Hospital, Cardiology Grand Rounds, *Recent progress towards advanced quantification of spatial and temporal thoracic aorta hemodynamics*. Milwaukee, WI – December 2009.

Children's Hospital of Wisconsin, Cardiovascular Research Focus Meeting, *Recent progress towards advanced quantification of spatial and temporal thoracic aorta hemodynamics*. Milwaukee, WI – August 2009.

Marquette University, Biomedical Engineering Brotz Seminar, *Cardiorespiratory regulation modeling and parameter identification*. Milwaukee, WI – February 2008.

Medical College of Wisconsin, Biotechnology and Bioengineering Center, *Cardiorespiratory regulation modeling and parameter identification*. Milwaukee, WI – December 2007.

OTHER MEETINGS

Society of Mathematical Biology Annual Meeting, (Virtual attendee, June 2021)

RTG Workshop at North Carolina State University: "Parameter Estimation for Mechanistic Biological Models" (Attendee, 2019).

MBI Workshop: "Control of Disease: Personalized Medicine across Heterogeneous Populations"
(Attendee)

VCU Biomathematics Seminar, *Modeling infant respiratory dynamics*. Richmond, VA – October 2016.

VCU Biomathematics Seminar, *Translating near-infrared spectroscopy O2 saturation data for the noninvasive prediction of spatial and temporary hemodynamics during exercise*. Richmond, VA – November 2015.

VCU Biomathematics Seminar, *Patient-specific 3D reconstruction of a stented coronary artery for analysis of cardiovascular disease*. Richmond, VA – September 2012.

American Institute of Mathematics Workshop: "Short-Term Cardiovascular-Respiratory Control Mechanisms" (Invited attendee). Palo Alto, CA – October 2006.

North Carolina State University, Graduate Student Seminars (Presenter and attendee),
Biomathematics, Numerical Analysis, and Applied Mathematics. 2003-2007.

Research Group on Heart-Brain Control Systems Meetings (Invited attendee). Copenhagen,
Denmark – October 2005 and Raleigh, NC – August 2006.

SAMSI Workshops (Participant), "Multiscale Model Development and Control Design," Spring 2004
and "Computational Biology and Infectious Disease," Fall 2004.

TEACHING EXPERIENCE and ACTIVITIES

Virginia Commonwealth University

Asst / Assoc Professor, Department of Mathematics and Applied Mathematics

2012 - present

F14

MATH 255: Introduction to Computational Mathematics – S16, F16, S18, S19, F20

MATH 301: Differential Equations – F12 (x2), F13, F15, F17, F19, F21, F23, F24

MATH 380: Introduction to Mathematical Biology – F17, S18, S21

MATH 533 (now 433): Partial Differential Equations I – S13, S14 (x2), S15, S16, S17

MATH 435 (prev 391): Mathematical and Computational Modeling – S19, S20, S23

MATH 415: Numerical Methods – F18, F19, F21, S24

MATH 490: Mathematical Expositions – S20

MATH 515: Numerical Analysis I – F13, S23, S24

MATH 585: Biomathematics Seminar: Physiological Modeling – S15, S17, S19, F23

MATH 615: Iterative Numerical Methods (graduate)* -- F15, F16, F18, F20, F22, exp. F24

MATH 690: Research Seminar (graduate) – S21

MATH 769: Topics in Parameter Estimation* – F22

Guest lecture for MATH 490: Mathematical Expositions – S14, F15, F16, S18, S19

Guest lecture for SYSM 681: Research Exploration – S21, S23, S24

Guest lecture for MATH 691: Special Topics in Mathematics – S19, S20

* New course: MATH 615, Numerical Analysis

Course description: Theoretical development of solutions to large linear and nonlinear systems by iterative methods with consideration given to optimal implementation. Linear methods included stationary iterative methods (Jacobi, Gauss-Seidel, fixed point/Picard), Krylov methods (CG, CGNR/CGNE, GMRES, Preconditioners), and linear least squares. Nonlinear methods included the general fixed point iteration, Newton's Method, chord, secant, inexact Newton, and quasi-Newton methods. Convergence, accuracy, and stability were covered in depth. Applications including parameter estimation were considered.

Novelty: MATH 615 has been in the course bulletin for several years but was taught for the first time at VCU by me in Fall 2015, then repeated in Fall 2016 and every other year. It is a combination of extensive theory and implementation of algorithms used in much of the current research in mathematical modeling. I developed lesson plans and assessments from scratch which including both analytical and computational assignments, projects, and tests.

* New course: MATH 769, Topics in Parameter Estimation

Course description: *Parameter estimation* is the process of computing a model's parameter values from measured data. This course focused on identifiability, sensitivity analysis, uncertainty quantification, numerical methods, and use in applications. Topics included local derivative-based sensitivity analysis, variance-based global sensitivity analysis, and gradient- and direct methods for optimization.

Novelty: This was a joint effort with Angela Reynolds to support the content needs of several SYSM PhD and applied math MS students. We each incorporated complimentary expertise from our own research programs and asked the students to analyze published models from the literature.

Curriculum Development

NSF Collaborative Research, DUE-1625557

2020 -- 2023

National Consortium for Synergistic Undergraduate Mathematics via Multi-institutional Interdisciplinary Teaching Partnerships (SUMMIT-P). Co-PI: Rebecca Segal.

MATH 301 curriculum development. Senior Personnel: \$10,000 over three summers.

Marquette University

Guest Lecturer (GL) and Lab Coordinator (LC), Dept of Biomedical Engineering

2008 – 2014

BIEN 4400/5400: Transport Phenomena (GL and LC)

BIEN 4720/5720: Cardiopulmonary Mechanics (GL)

BIEN 5320: Biomedical Instrumentation Design (GL)

University of Detroit Mercy

Guest Lecturer, College of Engineering and Science

2019

ENGR 1400: Introduction to Biomedical Engineering

Milwaukee School of Engineering

Adjunct Instructor, Department of Mathematics

2010 – 2012

MA125: Algebra I

MA127: Algebra II

North Carolina State University

Instructor (I) and Guest Lecturer (GL), Department of Mathematics

2003 – 2008

MA 111: Precalculus Algebra and Trigonometry (I)

MA 121: Elements of Calculus (I)

MA 231: Calculus for Life and Management Sciences B (I)

MA 241: Calculus II (I)

MA 432: Mathematical Models in Life and Social Sciences (GL)

STUDENT ADVISING AND MENTORING

Virginia Commonwealth University

PhD Advisees

Richard Foster, SYSM (co-advise with Cheng Ly) exp. 2026
Modeling and Parameter Estimation of Neurorespiratory Dynamics

Helen Harris, SYSM (co-advise with David Chan) exp. 2026
Modeling and Parameter Estimation in Health Systems

MS Advisees

Kylee Hartman-Cabellero, Applied Mathematics May 2024

Graduate Committees

Jordana O'Brien, PhD in Mathematical Modeling (Rochester Institute of Technology) Fall 2024
Hybrid Design Approaches for Reconfigurable EM Structures.

Jonathan Lundquist, PhD in Electrical and Computer Engineering Spring 2024
A Novel Approach to Predicting Particle Deposition in a Human Lung Using a Lumped, Oscillatory Respiratory Model

Kelly Reagan, PhD in Systems Modeling and Analysis Spring 2022
Mathematical Models of Infection Prevention Programs in Hospital Settings.

Molly Laird, PhD in Mechanical Engineering (University of Detroit - Mercy) Spring 2022
Assessment of Pediatric Pressure Distribution to Advance the Design of Pressure Redistribution Surfaces.

Sarah Minucci, PhD in Systems Modeling and Analysis Spring 2021
Mathematical Modeling of Lung Inflammation: Macrophage Polarization and Ventilator-Induced Lung Injury with Methods for Predicting Outcome.

Elora Frye, MS in Applied Mathematics Spring 2018
Material Thermal Property Estimation of Fibrous Insulation: Heat Transfer Modeling and the Continuous Genetic Algorithm.

Jeremy Myers, MS in Applied Mathematics Summer 2017
Fluid Dynamics in a Terminal Alveolar Airway: Validation and Proof-of-Concept in OpenFOAM.

Marcella Torres, MS in Applied Mathematics Summer 2015
A Comparison of Obesity Interventions Using Energy Balance Models.

Undergraduate Students

Mariana Fernandes Gragnani, BS in Applied Mathematics and Biomedical Engineering 2021 - 2023
Summer research (UROP)

Richard Foster, BS in Applied Mathematics, MS in Mathematics (MS S23) 2020
Summer and continued research (UROP)

Jeffrey Evans, BS in Biomathematics, MS in Mathematics 2018
Summer and continued research (UROP)

Lauren Linkous, BS in Electrical Engineering, current PhD candidate in EE 2016 - 2017
Summer and continued research (funded by Faculty Council award)

Reference letters

Jeremy Myers (PhD, computer science)
Caroline Springer (PhD, applied mathematics)
Hanqiu Tan (PhD, applied mathematics)

Lauren Linkous (PhD, biomedical engineering)
John Grant (MS, mathematics)
Noor Kuwaifi (MS, statistics)
Brian Byun (VCU Honors College continuing scholarship)
Prerna Yadav (VCU School of Medicine / Honors College preferred applicant track)
Tatenda Ndambakuwa (VCU merit scholarships, Tisdale Fellowship)
Vicky Patel (Dental school)
Scott Cohen (REU at North Carolina State University)
Hieu Hoang (VCU Engineering tutoring services)
Hannah Browning (MS, computational applied mathematics)
Mackenzie Sleigh (MS, data science)
Jeffrey Evans (MS and PhD, mathematics)
Sahib Singh (Medical school)
Patrick Gorman (MS, data science)
Madeline Boyes (VCU math undergraduate TA)
Richard Foster (MS, mathematics)
Diditta Rizk (multiple graduate programs)
Mariana Fernandes Gragnani (VCU merit scholarships, medical school)
Kate Javanillo (PhD, systems modeling and analysis)
Cody Cline (CURE summer program 2023)
Roberto Estrada (PhD, systems modeling and analysis)
Kylee Hartman-Cabellero (PhD, computational mathematics)
Anna Zittle (GSMMC summer program 2024)

Senior Capstone Design, School of Engineering

Ariana DeCastro, Chelsee Sales, Hanna Teshome, Sarah Robertson

2017-2018

Mentor, *Increasing chest expansion volume for extremely low birthweight babies.*
Team project chosen as finalist in BMES Senior Design Competition, 2018.

Marquette University

Graduate Committees

Ali Aleiou , MS in Biomedical Engineering	Aug 2017
<i>Evaluation of Multiple Wall Shear Stress Indices to Uncover the Stimuli for Restenosis and Malapposition in Patient-Specific Stented Coronary Arteries Reconstructed Using Optical Coherence and Computed Tomography</i>	
Joshua Hughey , MS in Biomedical Engineering	May 2014
<i>Computational Evaluation of Shear Stress and Restenosis in Stented Coronary Arteries using Optical Coherence Tomography.</i>	
Sung Kwon , MS in Biomedical Engineering	Dec 2013
<i>Quantification of Local Hemodynamic Alterations Caused by Virtual Implantation of Three Commercially-Available Stents for the Treatment of Aortic Coarctation.</i>	
David 'DJ' Quam , MS in Biomedical Engineering	May 2012
<i>Advanced Visualization and Intuitive Interface Systems for Biomedical Applications.</i>	
Timothy Gundert , MS in Biomedical Engineering	Dec 2011
<i>Improving Cardiovascular Stent Design Using Patient-specific Models and Shape Optimization.</i>	
Sara (Nomeland) Sherman , MS in Biomedical Engineering	Aug 2010
<i>Image-based Quantification Workflow for Coronary Morphology: A Tool for Use in Next-Generation Bifurcation Stent Design.</i>	

Ronak Dholakia, MS in Biomedical Engineering

Dec 2009

Numerical Modeling of Hemodynamics in the Thoracic Aorta and Alterations by Dacron Patch Treatment of Aortic Coarctation.

North Carolina State University

Graduate Students

Mitchel Colebank, PhD in Biomathematics

2018 - 2021

Mentor, senior author for *Influence of image segmentation on one-dimensional fluid dynamics predictions in the mouse pulmonary arteries.*

Undergraduate Students

Cheryl Zapata-Allegro, BS in Biomedical Engineering and Applied Mathematics

2007 - 2008

Summer and continued research. Received PhD at U. Utah in 2016.

NC State Research Experience for Undergraduates in Modeling and Industrial Mathematics

Supported by NSF grant #DMS0552571.

2005, 2006, and 2008

SERVICE AND OUTREACH

Professional Activities

Organizing Committee, Biology and Medicine through Mathematics Conference

2016-2024

Screened applicants, assisted plenary speaker, and facilitated on-site daily events. (VCU)

Grant Review Panelist, Department of Defense

2018, 2020, 2022-23

Congressionally Directed Medical Research Programs

Team Co-Leader, Collaborative Workshop for Women in Mathematical Biology

June 2022

"Modeling Neonatal Respiratory Mechanics related to Ventilator-induced Lung Injury"

Minisymposium Organizer, SIAM - Life Sciences Meeting

June 2020

"Computational Modeling in Respiratory System Pathophysiology"

Appointed Member, AWM Meetings Committee

Feb 2018 - Jan 2021

Appointed Member, AWM SIAM Committee

Feb 2015 - Jan 2021

Co-organizer, AWM Workshop at SIAM Annual Meeting, 2016-2018

Minisymposium Co-organizer, Society of Mathematical Biology Meeting

July 2017

"Modeling Transport and Control Processes in Systems Physiology"

Workshop Co-organizer, Mathematical Biosciences Institute

May 2014

"From Molecular to Systems Physiology". Recruited participants, facilitated daily events.

Professional Memberships

Various

Society for Industrial and Applied Mathematics, Society for Mathematical Biology, Society for Cardiovascular Magnetic Resonance, Biomedical Engineering Society

Ad-hoc journal reviewer

Ongoing

Computer Methods and Programs in Biomedicine, Journal of Applied Mathematics, Journal of Biomechanical Engineering, International Journal of Computer Assisted Radiology and Surgery, International Journal for Numerical Methods in Biomedical Engineering, Magnetic Resonance Imaging, Mathematical Biosciences and Engineering, Medical Image Analysis, SIAM Undergraduate Research Online, Journal of the Royal Society Interface, Mathematical Biosciences, American Journal of Physiology - Heart and Circulatory Physiology, Frontiers, Journal of Applied Physiology, Cardiovascular Engineering and Technology, Annals of Biomedical Engineering, Spora: A Journal of Biomathematics, PLOS Computational Biology

University Service**ADVANCE-IT Grant Steering Committee**

F19 - present

Assess progress of grant objective, identify barriers to success, promote initiatives, encourage participation

General Education Assessment Committee

F19 - F21

Create long-term university-wide plan for assessment of new GenEd 30 curriculum

Spring 2021: Assessment Plan subcommittee

Fall 2021: Quantitative Literacy subcommittee

Faculte Senate - Alternate

F23 - S24

Department Service**Executive Committee**

F20 - F22, F24 - present

Biomath/Applied Math Committee

F12 - present

Designed and approved biomath and applied mathematics curriculum changes, planned BAMM! conferences, hosted colloquium speakers

SYSM PhD Program Steering Committee

F22 - S24

Coordinator for MATH 301 Differential Equations

F20 - S24

Organizer, VCU Biomathematics Seminar

F16 - S19, F23 - S24

Recruited and hosted guest speakers from regional institutions

Promotion and Tenure review Peer Committee

F21 - F22

Promotion review Peer Committee (chair)

F20

Search / Hiring Committee for Tenure-track Faculty

F19 - S20

Search for 2 positions at the assistant professor level in mathematical biology. Screened applicants, attended Skype interviews, facilitated and participated in on-site candidate interviews.

Tenure review Peer Committee

F19

Awards Committee (chair)

F18 - S19

Chose department and college student awards, facilitated faculty nominations for college and university awards

Visitation Committee

F17 - S19

Observed adjunct, instructor, and peer tenure-eligible faculty teaching and provided written evaluations

Undergraduate Curriculum Committee

F15 - S17

Discussed and approved curriculum changes proposed by department subfields.

Search / Hiring Committee for Tenure-track Faculty

F15 - S16

Search for 3 positions at the assistant professor level. Screened applicants, attended Skype interviews, facilitated and participated in 6 on-site candidate interviews.

Assessment Committee

F12 - S15, F16 - S18

Activities to ensure alignment with accreditation expectations. Discussed wording of objectives, which courses delivered on objectives and at what level of proficiency, what materials were collected, and the design of rubrics for assessment.

Co-advisor, Women in Math Club

F13 - S16

Applied for and received official VCU Student Organization status. Students organized receptions for graduating female majors, arranged career panel of females in the workplace, and hosted an end-of-year celebration banquet. Assisted with planning Sonya Kovalevsky Days including submission of a grant to Dominion Foundation.

Undergraduate Credentials Committee

F12 - S15

Addressed graduation application issues, chose senior award winners

Colloquium Committee	F12 – S15
Invited and hosted general audience colloquium speakers	
Outreach	
Career Day Presenter (W.W. Gordon Elementary School)	F21, F22
Room Assistant, Math Night (W.W. Gordon Elementary School)	S20
Organizing Committee, Sonya Kovalevsky Day	S13, F16, F17
Coordinated logistics, recruited student volunteers and panelists, moderated Q&A panel, created biographical presentation, hosted mini-sessions, facilitated daily events	

PROFESSIONAL DEVELOPMENT

VCU - CTLE “Full Circle” Faculty Learning Community	Spring 2022
VCU ADVANCE-IT Pod Coaching Program	2021 -- 2024

Teaching

Center for Teaching and Learning Excellence 1-on-1 Consultation	Feb 2019
Center for Teaching Excellence Blackboard Workshops	2015
Center for Teaching Excellence Junior Faculty Mentorship Program	2013 – 2014
Met several times with mentor Jennifer Stewart (Biology). Attended workshops: “Scholarly Teaching: In Pursuit of Excellence in your Teaching,” “Developing a Teaching Portfolio,” “Preparing for Promotion and Tenure”, “Scholarly Teaching,” and mid-year luncheon.	

Research

Navigating the National Science Foundation Grant Process (VCU - CCTR)	May 2019
Building Skills for Grant Writing (VCU - CHS)	Apr 2019
Guided grant funding search meeting using PIVOT (VCU)	Feb 2013
NSF Day at the College of William and Mary	May 2013