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ABSTRACT 
We describe the early-stage development of a tangible block editor 
for the educational programming language Scratch that is intended 
to contribute to an environment that will allow blind and visually 
impaired (BVI) students (grades 6-12) to learn computer program-
ming concepts alongside their sighted peers (both independently 
and in pairs) in mainstream classrooms. In this late breaking work, 
we describe our design that incorporates many of the key strategies 
of the Scratch visual code editor meant to promote engagement 
and lower hurdles to programming. Novel key elements of the de-
sign include: the strategic use of magnets and locally interlocking 
block edges to ensure only blocks with valid syntax can be con-
nected, the use of telescoping tubing to specify parameter/operand 
location and allow their expansion for nested expressions and a 
block-sized-channel grid work surface that provides structure to 
aid BVI students in navigating and manipulating their programs. 

CCS CONCEPTS 
• Human-centered computing → Accessibility; Accessibility sys-
tems and tools; Collaborative and social computing; Collaborative 
and social computing systems and tools; • Hardware → Commu-
nication hardware, interfaces and storage; Tactile and hand-based 
interfaces. 

KEYWORDS 
Computer programming, tactile interfaces, tangible blocks, fducial 
markers, blind and visually impaired (BVI) accessibility 

ACM Reference Format: 
Bryson, J, Goolsby, Hyun Woo Kim, Dianne, T.V, Pawluk, and Giovanni 
Fusco. 2021. A Tangible Block Editor for the Scratch Programming Lan-
guage. In CHI Conference on Human Factors in Computing Systems Extended 
Abstracts (CHI ’21 Extended Abstracts), May 08–13, 2021, Yokohama, Japan. 
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3411763.3451833 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specifc permission and/or a 
fee. Request permissions from permissions@acm.org. 
CHI ’21 Extended Abstracts, May 08–13, 2021, Yokohama, Japan 
© 2021 Association for Computing Machinery. 
ACM ISBN 978-1-4503-8095-9/21/05. . . $15.00 
https://doi.org/10.1145/3411763.3451833 

1 INTRODUCTION 
Unfortunately programming environments being developed to in-
crease engagement and lower hurdles to programming for sighted 
K-12 students, such as Scratch, are actually increasing barriers for 
students who are blind or visually impaired (BVIs) due to their 
highly visual nature. This is problematic as most BVI students are 
taught in mainstream schools alongside their sighted peers and 
where these programming environments predominate (as well as 
in most computer clubs and camps). Although text-based program-
ming languages are much more accessible for BVIs through the use 
of screen readers and other audio interfaces [18, 20–22, 29], equal 
but separate is not a solution. In addition, Scratch, in particular, has 
thoughtfully incorporated ideas to increase engagement and ease 
learning [17]. These should not be abandoned but rather translated 
to an appropriate methodology for BVI students to beneft from as 
well. 

Our objective is to make the Scratch environment accessible 
to BVI students to allow them to experience the lower barriers to 
programming alongside their sighted peers. In this paper, we focus 
on a nonvisual solution for the code editor that maintains some 
important characteristics of the Scratch visual code editor, including: 
(1) the use of code construction through action, (2) a design reducing 
the need to struggle with syntax, (3) a straightforward environment 
and (4) the ability to construct code individually and with others. 
Our approach is to use a set of specially designed tangible blocks 
that inherently implements the idea of code construction through 
action, while also addressing the other issues mentioned above. 
In this paper, we will frst review related work, then present the 
design and development of our system and fnally summarize and 
discuss future work. 

2 RELATED WORK 
There are two main approaches taken to make programming acces-
sible to BVIs: making text-based programming languages accessible 
and making tangible programming languages (see [16, 29] for re-
views). For the most part, approaches making text-based languages 
accessible have not been able to take advantage of the methods used 
in visual block-based languages to lower the hurdles to program-
ming. One step in this direction, by Sanchez and Aguayo, limited 
and made circular the command list to choose from to decrease the 
emphasis on syntax [18]. However, studies on the use of tangibles 
in teaching have shown that they naturally capture some of the 
goals of visual block-based languages: encouraging engagement, ex-
citement and collaboration, promoting discovery and participation, 
and making computation immediate and more accessible [7]. 

https://doi.org/10.1145/3411763.3451833
https://doi.org/10.1145/3411763.3451833
mailto:permissions@acm.org


CHI ’21 Extended Abstracts, May 08–13, 2021, Yokohama, Japan Bryson Goolsby et al. 

For tangible approaches, two main directions have been taken: 
active blocks with electronics embedded and passive blocks which 
are tracked with a camera or scanner [16]. Project Torino’s product, 
Code Jumper, is a prominent example of active blocks: it consists of 
tangible “pods”, containing custom printed microcontrollers, that 
act as programming statements and interact with additional pods 
with wired connections [16, 26]. However, the active blocks make 
it expensive to extend beyond a small set of code pieces: this is 
still appropriate for their targeted demographic of ages 7-11, but 
not for the demographic of Scratch users (ages 11-18) for which 
the ability to make more complex programs is desirable. Several 
groups have considered the use of passive blocks with camera or 
scanner tracking of tags for both computational (e.g., [28]) and non-
computational activities (e.g., [3]). In particular, the StoryBlocks 
project uses tangible tiles with raised tactile symbols to construct 
stories by ftting tiles together like puzzle pieces [28]. We believe 
this type of approach can further take advantage of aspects of the 
visual Scratch environment to help lower barriers to programming. 

3 TANGIBLE BLOCK EDITOR DESIGN 
OVERVIEW 

The design approach worked to choose the most efective means 
to address the requirements itemized in the introduction based 
on the visual Scratch environment, previous work with tangible 
environments for BVIs, knowledge of tactile and haptic perception, 
and stakeholder involvement. 

3.1 Stakeholder Involvement 
During the development process, feedback from BVIs and their 
teachers/rehabilitation professionals was sought. The two main 
methods were: obtaining feedback from BVI high school students 
about the tangible block design and working with blind teachers 
of the blind to develop the tangible block and tactile surface de-
signs. The frst involved presenting tangible block prototypes to 
seventeen BVI high school students during the 2019 Learning Excel-
lence in Academics Program (LEAP) summer program at Virginia 
Commonwealth University. The second involved several meetings 
with Michael Fish, lead technology instructor, and Domonique Law-
less, orientation and mobility instructor, at the Rehab Center of the 
Virginia Department for the Blind and Visual Impaired (DBVI). 

3.2 System Overview of Editor 
The tangible block editor is designed as an alternate, BVI accessible 
code editor for Scratch that can be used by both BVI and sighted 
students, individually or in arbitrary pairs, to create programs of 
small to moderate size. The target demographic is students from 
grades 6 to 12 in computer education class settings and at home. 
An approach using passive pieces was chosen due to the desired 
maximum allowable program size (which would be cost prohibitive 
with active pieces) and age group (i.e., old enough to follow a design 
workfow) [16]. 

The main components of the design (Figure 1) are the tangible 
code blocks themselves for which a physical “palette” is created 
to hold and organize the diferent types of code blocks when not 
in use. Our initial version of the tangible block editor focuses on 
the motion commands, control statements, operators, variables 

and simple event blocks from the Scratch environment, although 
eventually all commands will be included to allow accessibility to 
any Scratch program created. The code assembly workspace is a 
structured surface used to facilitate navigation and assembly of the 
code blocks. A small part of the workspace, adjacent to the physical 
palette, is dedicated to speaking the block name and parameter 
requirements within that area. 

The tangible code editor is meant as an alternative editor for 
Scratch and we intend to map the tangible blocks into the visual 
Scratch editor (where it enters the Scratch environment) in real-
time. For this, the tangible code blocks are identifed and tracked 
using markers placed on the bottom of individual pieces. A Logitech 
web camera mounted in the center of the support frame underneath 
the clear work surface determines each code block’s identity and 
spatial location in real-time. A below surface rather than an above 
surface camera was chosen to avoid occlusion of the blocks from 
camera view by users’ arms and bodies. A second, above surface 
Logitech web camera will potentially be used to track the user’s 
fngers as part of a navigation assistance subsystem. 

By acting as an interface for Scratch, users will be able of produce 
programs of various complexities from simple looping examples to 
creating robust computer games that can be shared online [17]. 

4 TANGIBLE ELEMENTS 

4.1 Tangible Code Blocks 
We have observed several features in the Scratch visual code blocks 
that make them easy to use, promote program concepts and reduce 
the emphasis on syntax. For easy selection of the appropriate code 
block, blocks are grouped into categories, which are color coded, 
and command labels are short and meaningful. Blocks are sized 
for easy manipulation and snap together appropriately when the 
syntax is valid. All code blocks with parameters have a specifc 
“slot” for each parameter, with a label, to ensure the correct number 
of parameters are used. The shape of the slot ensures that only a 
valid parameter type (i.e., logical versus numeric) is used. Another 
important concept is that these parameters are “expandable” to 
allow for nested expressions not just explicit variables and literals. 
If and repeat code blocks have similar vertical expansion abilities. 

4.1.1 Overall Block Design. The prototype tangible blocks (e.g., 
Figure 2) were 3D-printed on an Ultimaker 3 using PLA. The gen-
eral shape of a basic block is a 1” by 1” square, which is easily 
manipulated by the user and allows over 450 blocks to ft into a 
rectangular area within the average 11-year old’s arm span [30]. To 
identify the code block category, both the overall block color and 
the texture along the bottom edge of the block are provided. Texture 
is used rather than block shape (e.g., [28]) as it is easier and quicker 
to process tactually [31], as well as distinct in nature from our 
actual code block command symbols (Figure 2, right). In addition, 
uniform blocks, in contrast to those varying in shape and/or size, 
make it easier to construct a structured work surface to facilitate 
program management. The fnal blocks will have distinct, bright 
colors to aid students with low vision. Colors will match those in 
the visual editor to aid sighted students moving between virtual 
and tangible environments. The textures chosen were selected from 
an experimentally derived texture palette [11]. 
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Figure 1: Left: Tangible workspace consisting of the program assembly area on the table top and the code block organizer 
to the right of the user (who would sit in the chair). Both cameras are shown, one above and one beneath. Right: Diagram 
of workfow of system: Top left, users take appropriate blocks out of organization bins; Top right, as blocks are placed on 
workspace, they are visual track by associated web cameras; Bottom right, user creates Scratch program with tactile blocks; 
Bottom left, positions and placement of tactile blocks are translated in digital Scratch GUI. 

Code block commands are represented by simple and intuitive 
raised relief symbols in a high contrast color of either black or white 
(depending on the block color), with a raised orientation marker in 
the upper left-hand corner used to orient the piece (Figure 2, left). 
Tactile symbols were chosen as a representation (similar to e.g., 
[28]), rather than text or Braille, as Roman letters are very difcult 
to perceive tactually and most people (BVI or sighted) do not know 
Braille. Previous work on tactile character recognition [11] and 
feedback from our stakeholders were used in creating symbols that 
were legible and intuitive. 

All blocks also have magnets (carefully selected in strength) 
embedded in them on their top and bottom sides (Figure 2, right), 
where correctly orienting the polarity for the top and bottom sides 
of the block allow pieces to snap together if correctly aligned and 
placed close together. Feedback from our stakeholders suggested 
that this provided a stronger sense of blocks “belonging together” 
than using interlocking edges alone. The magnets also facilitate the 
movement of whole multi-line program chunks on the workspace 
and provide resistance to the inevitable disturbance by tactile ex-
ploration and manipulation of the assembled code by the hands 
(although this contrasts with the experiences in [16] with Mag-
nets construction blocks). Although snap-fts are a cost efective 
alternative, they wear easily and can become inefective with use. 

The back of each block has a raised square “peg” which allows 
for each piece to slide along the channels of the tactile surface of 
the workspace (see Section 4.2). These pegs are also recessed to 
accept (and protect from damage) a small visual orientation marker, 
used to track block movement (see Section 5.1). 

4.1.2 Blocks with Parameters. The design for blocks with parame-
ters incorporates the design ideas for the visual Scratch blocks: (1) a 
“slot” is provided for each parameter, (2) blocks or block expressions 
cannot physically be attached in a slot if they do not belong, and 
(3) slots can expand to allow for nested expressions. These ideas 
were implemented in the tangible code editor by a block assembly 
with physical, expandable slots for parameters that can only be 

Figure 2: Tangible code block for “If on edge, bounce”. Left: 
facing the back surface. Right: facing the top surface; yellow 
boxes highlight the imbedded magnets used in the blocks 
and the red box highlights the orientation marker. 

inserted when valid (e.g., Figure 4). The slots are created and made 
expandable through the use of copper telescoping tubing. Copper 
was chosen due to its much larger modulus of elasticity compared 
to plastics and even aluminum: this was important as more com-
pliant materials caused bending, resulting in sticking when the 
tubing was expanded and contracted. Other methods tried, such 
as using tangible reels [5] or physical string or cord [26, 28], had 
a hard time clearly showing the relation between the parameters 
and the code command, especially for nested expressions. Syntax is 
enforced using the location of interlocking juts and notches rather 
than connection shape (as in visual Scratch). This choice was for 
two reasons: (a) connection shape is not easily discernible by touch 
and (b) magnets can be used to enhance the use of location to defne 
syntax but not the use of connection shape. 

The created block assemblies are illustrated for the PLUS opera-
tor and the AND operator in Figure 3. For both operator assemblies, 
we have bounding blocks, which could be thought of as parentheses 
in text-based code and which are implicit in the visual blocks of 
Scratch. The main block is the operator, with the appropriate num-
ber of slots added for the given operator. For the tangible blocks, the 
location of the notches(s) on the left side of a parameter slot (indi-
cated in red in Figure 3) indicate what type of expression resultant 
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Figure 3: Left: PLUS operator with expandable slots, Right: AND operator with expandable slots. Both: telescoping tubes appear 
as parallel sets of brass tubing between each block in the expandable elements. Note that neither assembly includes the texture 
and color for Operator blocks. 

Figure 4: (x < (y < x)), correct expression. Note that the resultant of (y < x) is a logical value. 

is accepted: the top notch is for logicals and the bottom notch is 
for regular numbers. The notch on the right-hand side of a slot 
is positioned so that the command cannot be completed without 
a parameter (indicated in green in Figure 3). Again, magnets are 
used for a “snap efect”, this time placed directly in the juts and 
notches of the interlocking connections. The telescoping used in the 
parameter slots (e.g., Figure 4) currently allows 2 levels of nesting. 

4.1.3    Variables and Literals. Variables and literals are more difcult 
to represent in a tangible interface as compared to a virtual one 
as they must be represented physically despite being any of an 
infnite number of values/names. Multi-digit combination “locks” 
were considered for literals, however the feasibility and cost of 
producing a tangible version did not seem realistic. Using a Braille 
label maker and sticking the created number on a blank block is 
possible but would require a method for the editor to automatically 
interpret the created value. However, for our initial development 
we will only allow the use of variables (which also encourages good 
programming practice). 

Variables are represented by blocks with their name in raised 
relief (e.g., “x” and “y” in Figure 4), with duplicate blocks provided to 
allow multiple instances of each variable in a program. We will work 
with our stakeholders to select 10 easily discernible names/symbols 
for our variables, and provide up to 10 instances of each. Users will 
be able to assign initial values and give their variables meaningful 
descriptions within a specifc area of the tangible workspace. In the 
future, we will explore using user generated Braille labels on blank 
blocks. 

4.2 Tangible Workspace 
An important concept of the visual Scratch workspace is that is 
designed to promote tinkering by: (a) being able to make changes 
to code while it is running, (b) creating parallel threads by sim-
ply creating parallel stacks of blocks, and (c) the ability to leave 
extra blocks or stacks around in case they are needed later [17]. 
In order to create moderately sized programs and provide for the 
latter two functions of tinkering, a sufciently large workspace 
is needed. However, the use of a tangible environment by BVIs 
presents a unique problem as the spatial feld of view through 

touch is signifcantly more limited than vision. This means that the 
conceptual organization of the workspace in the user’s mind must 
be done through sequential contact with the hands, which is slow 
and cognitively very demanding [31]. 

Educators of BVIs have suggested that a confned space be used 
for programming [32]. However, feedback from our stakeholders 
suggested that this was insufcient. They felt it was hard to struc-
ture lines of code in an empty workspace and wanted some structure. 
They also thought that a surface structure that facilitated the con-
nection of code blocks would be benefcial. A tangible workspace 
(Figure 1) was created with a structured surface to address these 
concerns and an organizational method for code blocks being stored 
of the surface in bins. 

4.2.1 Surface. The structured surface consists of a grid of channels 
(Figure 1) that the tangible code blocks ft in and can slide along. 
Program code elements (blocks and block assemblies) are made 
in a standard size or integer units of the standard size to enable 
movement within the channels. The created grid of channel grooves 
results in the bottom “post” of each block (Figure 2) being restricted 
to movement within the grooves, which maintains alignment of a 
block along a row or column while it is moving. The standardized 
size of the grid (and blocks) allows adjacent blocks to be connected 
across the channels in both horizontal and vertical directions. The 
channeled grid is meant to prevent accidental movement of the 
code blocks when reading the program with the hands and to 
facilitate alignment when assembling adjacent pieces. The grid 
organization is also intended to facilitate the user’s recall of where 
they placed blocks in the workspace. The structured surface was 
created from a sheet of transparent acrylic 23.5 inches by 48 inches, 
which translates into 23 by 48 code blocks. Horizontal and vertical 
channels were ground into the top surface of the sheet using a CNC 
End Mill. Tolerances were chosen to allow the blocks to slide in 
horizontal and vertical directions in the channels, while preventing 
the blocks from rotating freely. 

4.2.2 Palete Organization. Given the large number of coding com-
mands, a method to organize and easily retrieve tangible code blocks 
is essential. A preliminary organizational prototype for the tangible 
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block palette uses stackable storage bins (Figure 1). Each category 
of code blocks is in a diferent row, with one type of code block per 
bin (labelled with a plate that contains the front face of the block). 

4.2.3 Block Management Area. Again, given the large number of 
diferent coding commands used in the tangible editor, as well as 
their representation solely by tactile symbols, a sub-area of the 
workspace (beside the palette organizer) is used to provide audio 
descriptions of any blocks or block systems placed in it. This is 
also where we expect to assign variable values, although currently 
variables are only represented symbolically in the editor. 

5 SOFTWARE DESIGN 

5.1 Real-time Marker Information Extraction 
and Translation 

The identity and location of the code blocks on the workspace are 
determined using the OpenCV library to track ArUco markers on 
the back of the blocks (Figure 2) via the camera positioned below 
the clear workspace surface (Figure 1). The OpenCV detection al-
gorithm provides the relative distances between the markers it 
tags. Markers placed at known distances from each other on the 
workspace surface (one in each corner) are used to determine abso-
lute position of each code block. To date, the detection method has 
not failed to detect a code block’s id and location (x,y,θ ) in spite 
of the structure of the workspace surface which interferes with its 
optical clarity to some degree. Current work is now focused on 
using the extracted data in real-time to create a homomorphic rep-
resentation in the visual Scratch editor through Blocky keystroke 
commands (as Blocky underlies the visual Scratch code editor). 

5.2 Navigation Assistance Subsystem 
An important consideration for BVI students is: how do they, when 
working on a program, interact with a teacher (who may be refer-
ring to a highly visual lesson plan at the front of the room) or other 
students (both BVI or sighted, who may be working with them such 
as in paired programming)? What tools need to be provided for 
communication? Even if a sighted person is close enough to “pull” a 
BVI student’s hand to what they want to show, it is more desirable 
for BVI students to have agency over themselves. However, haptic 
exploration of the workspace without vision is slow. The naviga-
tion assistance subsystem is predicated on the belief that guidance 
inherently built into the tangible editor system itself will be useful 
and inofensive to BVI students. Currently we are testing this belief 
with a variety of diferent audio feedback algorithms. If desirable, a 
functional subsystem will be developed. 

6 DISCUSSION 
In this paper we presented a prototype tangible block editor that 
can be used as a code editor for Scratch by both BVI and sighted stu-
dents. The design approach preserves the constructivist approach 
of Scratch by using tangible code blocks to enact code construc-
tion through action. The approach also preserves the low barri-
ers to programming by implementing puzzle piece style fts and 
snap to connections for syntax, and expandable parameter slots for 
nested expressions. Modifcations were also made to accommodate 

diferences in haptic and visual perception, particularly the dif-
culty of navigating space haptically, without vision: In particular, 
a channeled grid-based surface was created and automated audio 
navigation assistance proposed. These new design components 
are currently being assessed for their usability and usefulness. We 
should also acknowledge the limitations in the design, which are 
primarily due to using a physical rather than a virtual environment: 
the size of the programs that can be constructed has a limit, nesting 
of operator expressions is currently restricted to two levels deep, 
and variables are not easily created and assigned. For the most part, 
we do not expect these limitations to be too restrictive for our aim 
in improving educational access to Scratch for BVIs. 

7 FUTURE WORK 
The most immediate next step is to complete a fully functional 
tangible block editor and perform an objective assessment of its 
usability and ability to engage BVI students. However, it is not 
the only component of Scratch that needs to be made accessible 
for BVIs. At the very least, a method to execute (and follow the 
execution of) the developed code is critical for learning how to 
program. We are exploring several diferent approaches: 1) the use 
of mini robots as dynamic interaction objects (similar to Ducasse’s 
work [6]), 3D sound (similar to computer action games), descriptive 
audio and a combination of all three. In doing so, we believe one 
of the most critical properties of any approach is that it needs to 
be interchangeable with Scratch’s stage (where code is animated 
visually). This, as well as to be developed web access tools, will be 
critical to attain the social, shareable (in class and online) aspect 
of Scratch programs, which is an important facilitator of student 
engagement. 
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